#### General

CH4-S3 is a popular small size and cost-effective methane sensor module with excellent performance. Rapid detection of methane gas leaks is possible while maintaining high accuracy over a wide temperature range. In addition, NDIR can be used for more than 10 years in a stable state for a long time.

Ver 1.0



# ELT Sensor Data Sheet for CH4-S3

#### **Features**

- Non-Dispersive Infrared (NDIR) Single Channel
   Technology to measure CH4 levels.
- Excellent compensation of Temperature Effect on CH4 concentration.
- Output : TTL-UART, I2C, ALARM,
   Analog Voltage or PWM is optional.
- Simple Calibration with Non-Periodic Manual
   Calibration (0\_MCDL : CAL1) and Periodic
   Automatic Calibration (0\_ACDL : CAL2).

• Size: 33mmx33mmx13.1mm

• Weight: 10 grams

This sensor module is calibrated with methane gas..

# **Specifications**

## **Applications**

Gas leakage alarming detector or equipment of CH<sub>4</sub>, LNG or combustible gases in Mine, metallurgy, liquefied gas station, petroleum, fuel gas ,etc.

## **General Performance**

Operating Temperature : -20 ~ 50°C

Operating Humidity: 0 ~ 95% RH (Non-condensing), 0 ~ 99% RH (Non-condensing) (1)

Storage Temperature : -30°C ~70°C

#### Measurement

Sensing Method: NDIR (Non-dispersive Infrared)

Measurement Range: 0 ~ 100% LEL (=0~50,000ppm vol. is optional) (2)

Output Default: % LEL, Optional: ppm (500ppm unit)

Accuracy: ±3% of F.S.(3),(4),(5)

**Detection Limit:** 2% LEL (=1,000ppm vol.), **Resolution:** 1% LEL (=500ppm vol.)

Step Response Time (90%, 1/e): 90 seconds / 45 seconds (Diffusion)

Sampling Interval: 3 seconds

**Warming-up Time :** < 6 seconds (for Detection), 3 minutes (for Accuracy)

#### **Electrical Data**

Power Input: 5V ± 5%(6)

Current Consumption: Normal mode: 21mA, Peak: 360mA, Sleep < 0.5mA

### **Product Derivatives and Relative Functions (Ordering Models)**

| Ordering<br>Models | Feature                                                                  | Option               |
|--------------------|--------------------------------------------------------------------------|----------------------|
| CH4-S3             | UART,I2C, ALARM, PWM, 0_MCDL(CAL1)/0_ACDL(CAL2)                          | CH4-S3-3V            |
| CH4-S3L            | Sleep mode is added on CH4-S3 for Low Power, which consume < 9mA         | CH4-S3 <b>L</b> -3V  |
| CH4-S3 <b>G</b>    | Resistant up to 99% Humidity for Application of Agricultural Green House | CH4-S3 <b>G</b> -3V  |
| CH4-S3 <b>LG</b>   | Sleep mode + 99% Humidity                                                | CH4-S3 <b>LG-</b> 3V |

<sup>(1)</sup> CH4-S3G: 0 ~ 99% RH (Non-condensing) for Industrial Application of Methane gas.

<sup>(2)</sup> PPM unit output is selectable as option when you designate on issuing order. (500ppm unit)

<sup>(3) 2%</sup> should be added for absolute measurements for uncertainty of calibration gas mixture unless '0' ppm or '0'ppm standard gas calibration is done.

<sup>(4)</sup> Air pressure is assumed as 101.3 kPa.

<sup>(5)</sup> If sensor is affected by the shock, may need field calibration before installation.

<sup>(6)</sup> DC Supply should be regulated without ripple < 100mV, low noise power source is needed for best accuracy.

CH4-S3 has various output TTL-UART, I2C, ALARM while as PWM or Analog voltage is selectable as option. 2.54pitch 13pin side hole connector besides 2mm pitch 10 and 4pin 2 row header connectors.

## Pin Map with J11&J12 Connectors

| J-11 | Description |
|------|-------------|
| 1/3  | VDD (+5VDC) |
| 2/4  | GND         |

| J-12 | CH4-S3 (Analog Voltage Option)                                                    |                                  |  |  |  |  |  |  |  |
|------|-----------------------------------------------------------------------------------|----------------------------------|--|--|--|--|--|--|--|
| 1    | TTL RXD (← CPU of Master Board )                                                  |                                  |  |  |  |  |  |  |  |
| 2    | TTL TXD ( $ ightarrow$ CPU                                                        | TTL TXD (→ CPU of Master Board)  |  |  |  |  |  |  |  |
| 3    | I2C SCL                                                                           |                                  |  |  |  |  |  |  |  |
| 4    | I2C SDA                                                                           |                                  |  |  |  |  |  |  |  |
| 5    | GND                                                                               |                                  |  |  |  |  |  |  |  |
| 6    | Reserved                                                                          | Analog Voltage Output (0.5~4.5V) |  |  |  |  |  |  |  |
| 7    | CAL2-pin: 0_ACDL (for every 7 days ACDL with periodic CH4-'0'ppm circumstance)    |                                  |  |  |  |  |  |  |  |
| 8    | Reserved                                                                          |                                  |  |  |  |  |  |  |  |
| 9    | CAL1-pin: 0_MCDL (for 10 minutes MCDL with CH4-'0'ppm- N2-based-gas or Fresh Air) |                                  |  |  |  |  |  |  |  |
| 10   | Reset (Low Active)                                                                |                                  |  |  |  |  |  |  |  |

**UART** 38,400BPS, 8bit, No parity, 1 stop bit

9,600 or 19,200 BPS can selectable through command sets or EK-100SL.

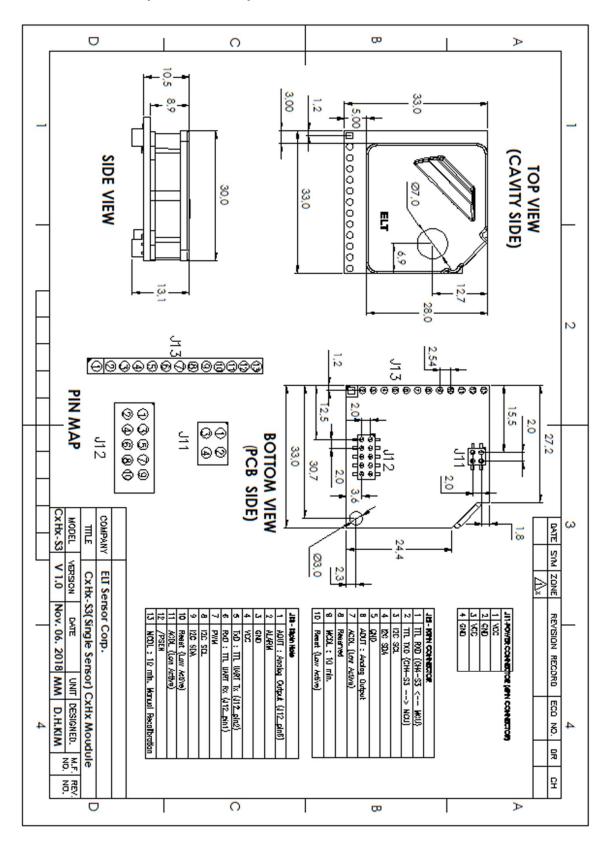
I2C Slave mode only, Internal pull up resister 10kΩ

TTL Level Voltage :  $0 \le V_{IL} \le 0.8$ ,  $2 \le V_{IH} \le V_{DD}$ ,  $0 \le V_{OL} \le 0.4$ ,  $2.4 \le V_{OH} \le V_{DD}$  (Volt)

**ALARM**: Open Collector type.

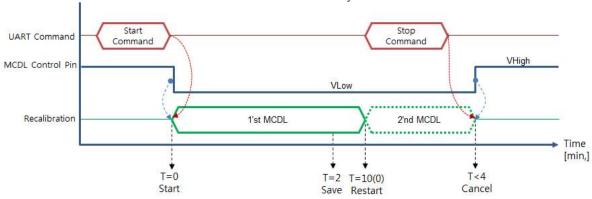
ex) Alarm\_On: 25% LEL, Alarm-Off: 10% LEL

Analog Voltage: 0.5~4.5V (option)


**PWM** (option)

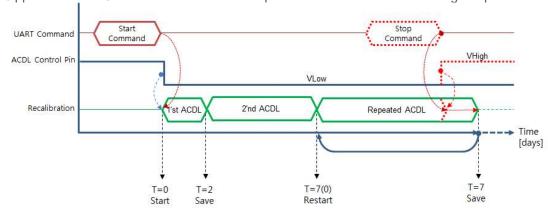
 $t_H = 2 \text{ msec(Start)} + 1,000 \text{ msec x (Measurement}_{(ppm)}/ \text{ Range}_{(ppm)}), T_L = 2,000 \text{ ms} - t_H$ 

# Pin Map with J13 Connectors


| J-13 | CH4-S3                                                                   | CH4-S3 (PWM/Analog Voltage Option)                                     |  |  |  |  |  |  |  |
|------|--------------------------------------------------------------------------|------------------------------------------------------------------------|--|--|--|--|--|--|--|
| 1    | Reserved                                                                 | Analog Voltage Output (0.5~4.5V)                                       |  |  |  |  |  |  |  |
| 2    | Alarm (Ope                                                               | Alarm (Open Collector)                                                 |  |  |  |  |  |  |  |
| 3    | G                                                                        | GND                                                                    |  |  |  |  |  |  |  |
| 4    | VDD (                                                                    | VDD (+5VDC)                                                            |  |  |  |  |  |  |  |
| 5    | TTL TXD (→ CPU                                                           | TTL TXD ( $\rightarrow$ CPU of Master Board )                          |  |  |  |  |  |  |  |
| 6    | TTL RXD (← CPU                                                           | TTL RXD (← CPU of Master Board )                                       |  |  |  |  |  |  |  |
| 7    | Reserved                                                                 | PWM Output (TTL)                                                       |  |  |  |  |  |  |  |
| 8    | I2C                                                                      | I2C SCL                                                                |  |  |  |  |  |  |  |
| 9    | I2C                                                                      | I2C SDA                                                                |  |  |  |  |  |  |  |
| 10   | Reset (L                                                                 | Reset (Low Active)                                                     |  |  |  |  |  |  |  |
| 11   | CAL2-pin (for every 7 days ACDL wit                                      | CAL2-pin (for every 7 days ACDL with periodic CH4-'0'ppm circumstance) |  |  |  |  |  |  |  |
| 12   | Res                                                                      | Reserved                                                               |  |  |  |  |  |  |  |
| 13   | CAL1-pin (for 10 minutes MCDL with CH4-'0'ppm-N2-based-gas or Fresh Air) |                                                                        |  |  |  |  |  |  |  |

# **Dimensions (unit:mm)**




# **0\_MCDL** (2 minutes Manual Calibration)

'0' ppm Manual Calibration can be done by giving start command or low signal to CAL1-pin at least more than 10 minutes since the fresh air is fully balanced near sensor.



# **0\_ACDL** (Periodic Automatic Calibration)

'0' ppm Periodic Automatic Calibration can be used by giving start command or low signal to CAL2-pin. The sensor calibrate automatically first in 2 days, seconds 5 days and every week. '0'ppm Standard Gas can be used when the place doesn't face free air during the period.



- Method 1. UART Command Set; J12: pin-1 (UART-RX) and pin-2 (UART-TX) to Main-Board (J13: pin-5 and pin-6 are available as well.).
- Method 2. I2C Command Set; J12: pin-3 (SCL) and pin-4 (SDA) to Main-Board. (J13: pin-8 and pin-9 are available as well.)
- Method 3. Let Sensor install on Jig Board, **TRB-100ST** (**Test and Recalibration Board**) with ambient air-flow condition or with 0'ppm Standard Gas and execute by moving jumper following Manual on the website.

Method 4. Send string command set below to RXD-pin of Sensor on Emulation program.

EK-100SL (Evaluation kit, with Emulation program 'ELTWSD') is available

Method 5. CAL1 / CAL2-pin settings for 0\_MCDL / 0\_ACDL

| CAL1<br>0_MCDL | CAL 2<br>0_ ACDL | Function            | Process                                                                                                                                                    |
|----------------|------------------|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Low            | High             | H/W '0'ppm<br>MCDL  | Let CH4-S3 sensor be located at ambient place where no methane gas exist and wait 2 minute. '0'ppm Standard gas can be used when '0'ppm is not guaranteed. |
| High           | Low              | H/W '0' ppm<br>ACDL | Automatic Calibration can be used where CH4 meet the clear air more than 3 minutes per week.                                                               |
| High           | High             | Normal              | Operate with Factory Calibrated or previously set status                                                                                                   |

- \* 1. CAL-1pin and CAL-2pin shouldn't have 'Low' at the same time.
  - 2. Be sure to escape MCDL fetch loop between 2 minutes and 4minutes to avoid inappropriate calibration.

# **Output Descriptions**

## **UART Descriptions**

Data Format

| SP      | SP | SP   | D2 | D1 | '%' | SP  | 'L'         | 'E'     | 'L'      | CR     | LF |
|---------|----|------|----|----|-----|-----|-------------|---------|----------|--------|----|
|         |    |      |    |    |     |     |             |         |          |        |    |
|         |    | SP x | 3  |    |     |     | Sp          | oace: ( | 0x20     |        |    |
| D2 ~ D1 |    |      |    |    |     | 2 b | yte C       | H4 de   | nsity s  | string |    |
|         | %  |      |    |    |     |     |             | % : 0x  | (25      |        |    |
|         | SP |      |    |    |     |     | Space: 0x20 |         |          |        |    |
| 'LEL'   |    |      |    |    |     |     | ′           | LEL' s  | tring    |        |    |
|         | CR |      |    |    |     |     | arriag      | e retu  | ırn : 0: | x0D    |    |
| LF      |    |      |    |    |     |     | Line        | feed    | : 0x0A   | ١      |    |

Above 12byte consist by 2 byte hexadecimal digits, <SP>,<SP>,<SP>, D2, D1, 0x25, <SP>, 'L', 'E', 'L', <CR><LF>, where decimal '0' (corresponds to hexadecimal digit '0x30') is replaced by space (corresponds to hexadecimal digit '0x20'),

EX) 10% LEL (= 3,500 ppm) string is '0x20 0x20 0x20 0x20 0x31 0x20 0x20 0x4C 0x45 0x4C, 0x0D 0x0A',, of which display on the screen is '\_\_\_\_10%\_LEL<CR><LF>'.

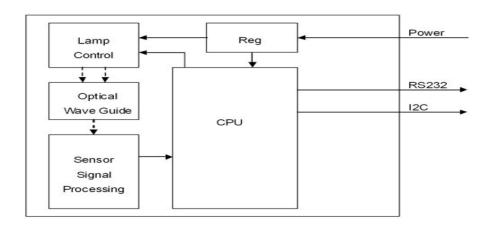
'ppm' display is Option on sale, which D6~D1 string display the CH4 concentration of

| D6 | D5 | D4 | D3 | D2 | D1 | SP | 'p' | 'p' | 'm' | CR | LF |
|----|----|----|----|----|----|----|-----|-----|-----|----|----|
|----|----|----|----|----|----|----|-----|-----|-----|----|----|

EX) 5,000 ppm string is '0x20 0x20 0x35 0x30 0x30 0x30 0x20 0x70 0x70 0x6D 0x0D 0x0A', of which display on the screen is ' $\_$ 5000 $\_$ ppm<CR><LF>'.

## **I2C Communication (Only Slave Mode Operation)**

Internal pull up resister  $10k\Omega$ 


Slave Address: 0x31, Slave Address Byte: Slave Address(0x31) 7 Bit + R/W 1 Bit

| Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bit0       |
|------|------|------|------|------|------|------|------------|
| 0    | 1    | 1    | 0    | 0    | 0    | 1    | R/W<br>Bit |

R/W Bit: Read = 1/Write = 0

When reading the data, Slave Address Byte is 0x63, When writing the data, Slave Address Byte is 0x62.

## **Block Diagram**



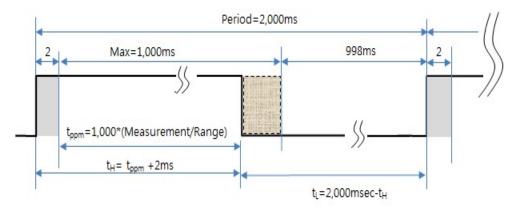
#### **Transmission Sequence in Master**

- 1) I2C Start Condition
- 2) Write Command(Slave Address + R/W Bit(0) = 0x62) Transmission and Check Acknowledge
- 3) Write Command(ASCII 'R': 0x52) Transmission and Check Acknowledge
- 4) I2C Stop Command
- 5) I2C Start Command
- 6) Read Command(Slave Address + R/W Bit(1) = 0x63) Transmission and Check Acknowledge
- 7) Read 7 Byte Receiving Data from Module and Send Acknowledge (Delay at least 1ms for reading each byte)

| Header  | CH4    | reserved | reserved | Reserved | reserved |  |  |  |  |  |  |  |
|---------|--------|----------|----------|----------|----------|--|--|--|--|--|--|--|
| 1 Byte  | 2 Byte | 0x00     | 0x00     | 0x00     | 0x00     |  |  |  |  |  |  |  |
|         |        |          |          |          |          |  |  |  |  |  |  |  |
|         |        |          |          |          |          |  |  |  |  |  |  |  |
| 0 0 0 0 | 1 0 0  | 0        |          |          |          |  |  |  |  |  |  |  |

In need of detail protocol specification and time sequence, '12C programming guide' could be provided by contacting Sales Rep.

## **Alarm Descriptions**


Alarm signal operates as Open Collector type and send TTL on signal since CH4 measured value beyond 25% LEL until it go down to 10% LEL. It is designed to be activated when CH4 measured value surpass 25% LEL and deactivated down to 10% LEL to avoid unwanted rapid switching by hysteresis effect.

Alarm\_On: 25% LEL, Alarm-Off: 10% LEL

EK-100SL series is available for customer to enable to change alarm activation & deactivation point.

## **PWM Descriptions: Option**

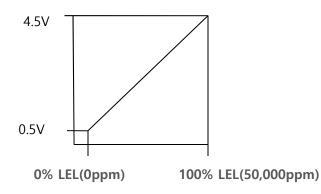
- \* Measurement<sub>(ppm)</sub> = (t<sub>H</sub>-2msec)/1000msec x Range<sub>(ppm)</sub> (t<sub>H</sub> : High Pulse Width)
- \* Range<sub>(ppm)</sub>: 0~100% LEL (0~50,000 ppm)



EX) t<sub>H</sub> (High Pulse Width) calculation for 50% LEL in 100% LEL Range.

\*Measurement(% LEL) = 50% LEL =  $(t_H-2ms)/2,000msec x Range(% LEL)$  ,

\*t<sub>H</sub>= 1,000 msec \* (50% LEL / 100% LEL) + 2msec = 502msec


(cf:  $T_L$ = Period -  $t_H$  = 2,000 msec - 502 msec = 1,498 msec.)

## **Analog Voltage Output Descriptions: Option**

Measured Voltage 0.5V~4.5V match proportionally to 0 ~ 100% LEL.

\* CH4 Measurement  $_{(ppm)}$  = ((Output  $_{Voltage}$  – 0.5) / (4.5 – 0.5)  $_{Voltage}$ ) x 100% LEL.

EX) if the Output 
$$_{Voltage}$$
 is 2.5V in 0~100% LEL range, CH4 (% LEL) = (2.5 - 0.5) V÷ (4.5 - 0.5)V x 100% LEL = 0.5 x 100% LEL = 50% LEL



#### **X** Caution

- 1. The gold cavity part of the sensor module or the PCB outer part should not touch by the customer's case housing. It causes long-term value fluctuation. Be at least 3 mm apart from the housing.
- 2. When removing and inserting the sensor module, do not hold the gold cavity but hold the PCB on both sides. Put on the electret gloves to prevent the static electricity.
  - (Excessive force on the gold cavity can affect the initial performance and accuracy of the sensor.)
- → If the measured value is wrong, you can calibrate zero point for more than 10 minutes at CAL1 (MCDL) position and use it with high accuracy.
- 3. Do not let water get on, drop, or shock the sensor.
- 4. Do not store the sensors in high temperature and high humidity for long time without applying power. The initial measurement accuracy of the sensor may be affected.
- 5. Be careful not to be affected by static electricity and induction electromagnetic field around sensor.
  - To prevent static electricity from being generated during assembly, wear electrostatic gloves and work on a static-free workbench. (Keep the sensor in the place where the electricity is removed.)
- 6. Install the sensor at a position as far away as possible from the motor or vibration. Vibration or noise may be accuracy affected during sensor operation.
- 7. When using the sensor for the first time or after long term storage, you can use CAL1 MCDL zero ppm calibration and use it with high accuracy.
- X Specification of C-H Series could be changed without notice. 

  ✓